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The assessment of alternative economic policies is one of the most challenging
uses of econometric models. This paper discusses how the concepts of exogeneity
and cointegration influence and help interpret the uses of econometric models in
economic policy analysis. The main contribution of the paper is expositional — it
unifies, supplements, and synthesizes previously disparate results on exogeneity, par-
ticularly those for cointegrated systems. Discussion focuses on econometric conditions
for reliable conditional policy analysis: specifically, analysis based on an economet-
ric model that characterizes the distribution of policy targets conditional on policy
instruments. Relatedly, we consider limitations of some commonly used policy tools,
including equation inversion and impulse response analysis. The econometric con-
cepts of exogeneity, cointegration, causality, and invariance are vital in determining
the usefulness of estimated models for economic policy. Throughout, this paper lays
out the concepts and the structure of the modeling approach adopted in the other
empirical papers of this special section of the Journal of Business and Economic
Statistics.

Building on the work of Engle, Hendry, and Richard (1983), Section 1 reviews sev-
eral econometric concepts, including the data generation process (as distinct from the
econometric model), weak exogeneity and parameters of interest, strong exogeneity
and Granger causality, super exogeneity and invariance, and parameter constancy.
Section 2 discusses the cointegrated vector autoregression — a class of econometric
models used throughout the rest of the paper — and uses it to illustrate long-run weak
exogeneity and Granger causality. This section also considers some purposes of and
conditions for conducting economic policy with econometric models. The next three
sections focus on implications of the discussed econometric concepts for economic
policy analysis. Particular issues include the Lucas critique (Section 3), inversion of
econometric equations to determine policy effects (Section 4), and impulse response
analysis (Section 5). Banerjee, Hendry, and Mizon (1996) and Hendry and Mizon
(1998) discuss the additional, related policy issues of co-breaking, forecasting, pol-
icy credibility, expectations, and scenario studies. Section 6 illustrates the analytical
discussion with a small econometric model using UK money-demand data. Finally,
Section 7 summarizes the papers in this issue’s special section and relates them to
recent developments in cointegration and exogeneity in the context of economic policy
analysis.

1 Preliminaries and Notation

Section 1.1 distinguishes between the data generation process and an econometric
model thereof, as background for discussing exogeneity in Sections 1.2-1.4. Whether
or not a variable is exogenous depends upon whether or not that variable can be



taken as given without losing information for the purpose at hand. The distinct pur-
poses of statistical inference (estimation and testing), forecasting, and policy analysis
define the three concepts of weak, strong, and super exogeneity. Valid exogeneity
assumptions permit simpler modeling strategies, reduce computational expense, and
help isolate invariants of the economic mechanism, with the last being particularly
important in policy analysis. Invalid exogeneity assumptions may lead to inefficient
or inconsistent inferences and result in misleading forecasts and policy simulations.
Weak, strong, and super exogeneity are defined relative to parameters of interest,
whereas predeterminedness and strict exogeneity are not, making the latter two con-
cepts of limited use for policy analysis; see Engle, Hendry, and Richard (1983) for
details.

Sections 1.2, 1.3, and 1.4 discuss weak, strong, and super exogeneity respectively.
Section 2 re-examines these notions when cointegration holds. Readers familiar with
weak, strong, and super exogeneity may wish to skip directly to Section 2.

1.1 The Data Generation Process and the Econometric Model

The data generation process (DGP) is commonly defined in terms of the joint distri-
bution of the data. Let the triple (2, F, P(-)) denote a probability space, where €2 is
the sample space for a vector of NV variables z at time ¢ (denoted z;) that characterize
an economy, JF is the event space of 2, and P(-) is the probability measure for the
events in F. Denote the history of the stochastic process {z;} up to time (¢ — 1) by
X;_1, which is (Xg,21,...,7,_1) or (Xo, X! ), where Xy is the set of initial condi-
tions and X} = (z;,...,2;) for i < j. The DGP Dx (X7 | Xo,() can be sequentially
factorized as:

T
Dx(X; | X0,¢) = [ P=(ae | Xio1,¢) (eR, (1)

t=1

where Dy (X1 | Xo,() is the joint density of X1 given Xy, ¢ is an £ x 1 vector of
parameters, the sample is over [1,T], (, is the subset of the parameters in ( that
enters the sequentially conditioned density D,(x; | X; 1,(;), and ¢ = ({,...,(p)
(ignoring redundancies). This formulation allows for nonconstant parameters, such
as transients due to regime shifts and structural breaks, so the sequential conditioning
in (1) may include very complicated effects.

The econometric model for the full sample of z; may be factorized similarly:

T

Fx(Xp | X0,0) = [ feola: | Xi21,0) §cOCR", (2)

t=1

where fx (X% | Xg,0) represents the econometric model; f,(z; | X; 1,6) is the pos-
tulated, sequentially conditioned, joint density for x;; and 6 is an n x 1 vector of



parameters lying in the parameter space ©. Section 2 examines vector autoregres-
sions as a particular form for the joint sequential density f,(z; | -). The econometric
model is generally not the DGP, i.e., f.(x¢ | -) # D.(z; | -). That lack of equality
has implications for inferences about 6. For example, if 07 [= 6(()] is the full-sample
pseudo-true value assuming constancy, 67 will minimize the Kullback Leibler mea-
sure of distance between the two densities. A modeling strategy that aims to develop
congruent and encompassing econometric models thus endeavors to keep such differ-
ences to a minimum; see Hendry (1995a), Mizon (1995), and Bontemps and Mizon
(1997) inter alia.

Sometimes, joint modeling of all variables in z; is too difficult, so a subset of
m variables y; is modeled conditional on the remaining k variables z;, i.e., with x;
partitioned as z; = (y; : ;)" and N = m + k. Weak exogeneity of the conditioning
variables z; is required for estimation of the conditional model for y; to be without
loss of information relative to estimation of the joint model for y; and z.

Before turning to weak exogeneity itself, a few notational conventions are helpful
to establish. The partitioning of x; into 3 and z; implies similar partitionings of
parameter vectors and matrices. Notationally, numerical subscripts 1 and 2 indicate
the partitions associated with y and z respectively. The partition may be according
to the density in which the parameter enters, as with A = (A} : \3)’, or corresponding
to the variable multiplied. The context clarifies the precise usage. Pairs of numerical
subscripts generally correspond to such partitions applied by row and by column. For
example, the dynamic weighting matrix I" is {I";;}, where { - } denotes the partitioned
matrix consisting of (possibly matrix) elements I';; (i, 5 = 1,2). For the cointegration
weighting matrix o and the cointegrating vectors (3, the column partition is by choice.
A subscript ¢ on a parameter explicitly indicates potential time dependence.

1.2 Parameters of Interest and Weak Exogeneity

One useful approach to developing a model of  may be to model some subset of z,
conditional on the other variables in z. Weak exogeneity is the requirement for condi-
tional estimation to be without loss of information from conditioning. Richard (1980)
proposes the concept of weak exogeneity, building on Koopmans (1950); Engle, Hen-
dry, and Richard (1983) analyze it in greater detail; and Ericsson (1992) provides an
exposition. Florens and Mouchart (1985) and Boswijk (1994) discuss its relationship
to the concept of S-ancillarity described by Barndorff-Nielsen (1978).

To state the conditions for weak exogeneity, it is necessary to transform the para-
meters of the joint distribution into those of the conditional and the marginal distri-
butions. Hence, the original model parameters 6 are transformed to the parameters
A as A = g(#). The function g(-) defines a one-to-one mapping of 6 into A for A € A,
sustaining \' = (A} : \;) and corresponding to the factorization of the joint density



into a conditional density and a marginal density:

fm(ynZt | Xt—lug) = fy\z(yt | Zt,Xt—h)\l) : fz(Zt | Xt—17)\2)- (3)

Such a factorization always can be achieved if \; and Ay are defined to support it,
although the resulting parameters may then be linked.

Whether or not conditional estimation will result in a loss of information depends
crucially on what parameters are the focus of attention. Denote the ¢ (¢ < n)
identified parameters of interest by the vector ¢. The factorization (3), in combination
with the parameters of interest, permits defining weak exogeneity.

Definition 1 2z is weakly exogenous for the parameters of interest 1 if and only if:
(a) ¥ =1v(N\), i.e., ¥ is a function of Ay alone; and

(b) A1 and Xy are variation free.

[See Engle, Hendry, and Richard (1983, Definition 2.5).]

Condition (a) ensures that i can be learned from A;. Together, conditions (a)
and (b) exclude the possibility that ¢ depends on Ay, either directly [(a)] or indi-
rectly [(b)]: hence, no information about the parameters of interest can be derived
from the marginal model. Because ¢ can be learned uniquely and completely from
the conditional model, weak exogeneity is a sufficient condition for efficient inference
on v from the conditional model.

The marginal distribution of policy variables may be difficult to model empiri-
cally, due to changes in policy regime. In such a situation, valid conditioning on
those variables can greatly assist empirical modeling. Although nonconstancy in the
marginal process argues strongly for conditional modeling, it also places a premium
on ensuring that weak exogeneity holds, both in sample and out of sample. Equally,
the “exogenous” control of policy variables by a policy agency does not in itself justify
conditioning on those variables, as Section 2.2 and Section 3 show.

Failure of either (a) or (b) precludes inference without loss of information when
using the conditional model alone. The potential consequences of that information
loss can be delineated into four distinct types. First, the parameters of interest cannot
be obtained from the conditional model, as with errors-in-variables and simultaneity.
Second, inference is distorted, even though 1 is obtained, as for unit-root processes in
which 1 (the cointegrating vector, say) depends on both A; and \g; see Phillips and
Loretan (1991) and Hendry (1995¢). Third, knowledge of s is required to identify
Y. Fourth, efficiency may be lost because Ay contains useful information about A, as
with classical cross-equation restrictions. In the current paper, the first and second
types are most relevant.



1.3 Granger Non-causality and Strong Exogeneity

Granger non-causality is one of two conditions required for strong exogeneity, which
bears on conditional impulse response analysis (Section 5) and conditional forecasting
inter alia. Granger causality is defined as the presence of feedback from one variable
to another, with Granger non-causality defined as the absence of such feedback.

Definition 2 Suppose that the marginal density f.(-) does not depend on Y;_q, i.e.,
fo(ze | Xeoq,) = fa(ze | Zio1,¢). Then, y does not Granger cause z. [See Granger
(1969) and Engle, Hendry, and Richard (1983, Definition 2.1).]

One set of variables (here, y) does not Granger-cause the remaining variables (here,
z) if, given the information set available, deleting the history of the former set of
variables does not alter the joint distribution of the remaining variables.

Unlike weak exogeneity, Granger causality does not involve parameters of interest
and so is not related to their estimation. Indeed, Granger non-causality is neither
necessary nor sufficient for weak exogeneity. Granger non-causality in combination
with weak exogeneity, however, defines strong exogeneity.

Definition 3 z; is strongly exogenous for the parameters of interest 1 if z; is weakly
exogenous for ¥ and if f.(z | X¢1,:) = f.(z | Zi1,-). [See Engle, Hendry, and
Richard (1983, Definition 2.6).]

Strong exogeneity permits conditional forecasting from the conditional model without
loss of information. That is, forecasts of z over several periods may be constructed,
and then forecasts for y are generated from the conditional model, conditional on
that set of forecasts for z. If y did Granger-cause z, then forecasts for y and z would
need to be constructed together, one period at a time, or else risk losing valuable
information from feedback.

The preceding discussion of weak and strong exogeneity assumes parameter con-
stancy, although abundant empirical evidence indicates the presence of regime shifts
and structural changes in the economy. Hence, the next subsection extends the con-
cept of exogeneity to allow for the presence of parameter nonconstancies, such as
might result from changes in economic policy rules.

1.4 Invariance and Super Exogeneity

Even if the parameters of fy.(y | 2, X¢i—1, M) and f.(z | Xi—1, A2) are variation free,
A1 still may change as Ay alters. The explanation turns on the relationship between A,
and Ay and on their dependence on {(,} through interventions, at what is sometimes
called the level of deep parameters. Specifically, the policy agency determines the
marginal process D,(z | X;_1,(y), even though it decides policy on the basis of its
models rather than the DGP. Changes in (,, alter A9, and those changes may or may



not alter \;. The presence or lack of invariance to a class of interventions is tied to
a third concept of exogeneity, super exogeneity, as discussed later in this subsection.
With super exogeneity, conditional policy simulations involve no loss of information
relative to simulations of the variables’ joint distribution.

A parameter intervention at time t affecting the DGP D, (z; | X; 1,(,) is de-
fined as any action a; by an agent, where that action alters last period’s parameter
value (,_; to become this period’s parameter value (, [= w(as,(, 1), say]. If no in-
tervention occurs, then ¢, = (, ;. Let Cc(t) [= {a: : {, = w(as, (;_1)}] be the set
of interventions at time ¢ on D,(x; | X; 1,-) that potentially affect (,, and denote
the set of such interventions over the full sample as C; [= {C/(¢), t = 1,...,T}].
Possible interventions include changes to monetary, fiscal, and exchange-rate policy
rules, deregulation, financial and technological innovation, nationalization, and war.
Because the DGP is the economic mechanism, its parameterization can be affected
by intervention. Indeed, the aim of many economic policies is precisely to affect the
DGP. Such interventions may consequentially affect an econometric model. Here,
those of most relevance are changes in the marginal process that are enacted by a
policy agency controlling (,,, with the associated class of interventions denoted by
Cs.

The conditional model’s parameters A\; may alter as (,, varies within the class
of interventions Cy. Engle and Hendry (1993) and Section 3 below consider derived
changes in (;;, such as would occur under the Lucas critique. (Policies involving direct
changes in (;, are more difficult to analyze and are not considered here.) Conversely,
the model parameters \; may be invariant to a class of interventions C,.

Definition 4 A\ is invariant to a class of interventions Co if A1 is constant over C,.
[See Engle, Hendry, and Richard (1983, Definitions 2.7 and 2.8).]

Because economies undergo numerous changes, it is important for econometric
modeling that some of the economies’ features be invariant to those changes. With-
out such invariance, econometric modeling and economic policy analysis using econo-
metric models would be of limited value. Moreover, the invariance of \; is central
to obtaining reliable policy simulations (or counterfactual experiments), in which the
path of some policy instrument z is specified and the path of a target variable y is
calculated from the conditional econometric model fy.(y; | 2, Xi—1,A1). Because A
is unknown, the weak exogeneity of z; for the parameters of interest is typically re-
quired for efficient estimation from the conditional distribution alone. Reliable policy
simulation thus requires the combination of weak exogeneity and invariance, which
Engle, Hendry, and Richard (1983) define as super exogeneity.

Definition 5 z; is super exogenous for the parameters of interest 1 if z; 1s weakly
exogenous for v and if A\ is invariant to Cy. [See Engle, Hendry, and Richard (1983,
Definition 2.9).]



Under super exogeneity, policy actions affect (,,, thus altering the marginal model’s
parameters Ay and the path of the policy variable z. Those policy actions do not
affect the conditional model’s parameters A;, although outcomes for y depend on
the hypothesized path for the policy variable z through the conditional model itself.
Thus, under super exogeneity, policy can and (in general) does affect agent behavior:
it does so through the variables entering the conditional model, albeit not through
the parameters of that model. Finally, y may Granger-cause z even if z; is super
€xX0genous.

2 Cointegration and Exogeneity

This section elaborates on the concepts of weak exogeneity, Granger non-causality,
strong exogeneity, invariance, and super exogeneity for a commonly used class of
econometric model — the finite-order vector autoregression (VAR). The cointegrated
(or reduced rank) VAR has been used successfully in many areas of economics, and
it appears capable of capturing some of the potential relationships among economic
time series. Section 2.1 discusses the VAR itself. Sections 2.2 and 2.3 consider
specific implications of weak exogeneity and Granger causality for that VAR, whereas
Section 2.4 highlights more general aspects of economic policy analysis. Sections 3,
4, and 5 focus on implications of exogeneity for three central issues in policy analysis:
the Lucas critique, model inversion, and impulse response analysis.

2.1 A Cointegrated Vector Autoregression

A VAR has several equivalent representations that are valuable for understanding
the interactions between exogeneity, cointegration, and economic policy analysis. To
start, the levels form of the st®-order Gaussian VAR for z is:

Ty = th + Z ijt—j + & Ep INN (0, 2) s (4)

i=1

where K is an N x Ny matrix of coefficients of the Ny deterministic variables ¢;; the A;
are N x N matrices of autoregressive coefficients; and ¢; is a vector of N unobserved,
jointly normal, sequentially independent errors with mean zero and (constant) covari-
ance matrix X. This subsection examines some properties of (4), first transforming it
to 1(0) space with mean-zero variables. For expositional convenience, x is restricted
to be (at most) integrated of order one, denoted I(1), where an I(j) variable requires
4t differencing to make it stationary. Again, for expositional convenience, the system
is often first-order (s = 1) or second-order (s = 2) with a (possibly zero) intercept 6
as the only deterministic variable (6 = K¢;). See Johansen (1992c, 1992d, 1992¢) and
Juselius (1998, this issue) for theoretical and empirical analyses of cointegrated I1(2)



variables. Normality is also a convenient assumption, but one not required by the
framework of Section 1.

Suppose that the VAR in (4) is second-order, has an intercept as its only deter-
ministic variable, and has r (r < N) cointegrating relations 3'z;, defined as nonzero
linear combinations of x, that are I(0). That VAR can be written as the vector
equilibrium-correction model,

Al’t =6 + Cl/ﬁll’t_l + FALEt_l + &¢. (5)

The first difference operator A equals 1 — L, where L is the lag operator such that
Lx; = x;_1; o and 8 are N x r matrices of rank r such that a3 = A; + Ay — Iy;
and I' = —A,. See Johansen (1988, 1991, 1992b, 1995), Johansen and Juselius
(1990), Banerjee, Dolado, Galbraith, and Hendry (1993), and Hendry (1995a) for key
developments of and discussions on this class of cointegrated system. Identification
restrictions must be imposed to ensure uniqueness of a and 3. For the correct choice
of r, the model in (5) is in I(0) space, so inference about the parameters 6, a, I', and
> can be conducted using conventional procedures.

The VAR in (5) can be usefully rewritten with zero-mean variables. Suppose that,
in steady state, the underlying variables grow at a rate v, defined as £(Ax;), where
E(-) is the expectations operator. Taking expectations across (5) and re-arranging,
the long-run solution of the system is:

al(f'zy) = (In —T)y—6. (6)
Defining the equilibrium mean &(5'x;) as p implies:
6 = (Iy—T)y—ap. 7)

Thus, adding and subtracting v and p in (5) yields an expression in which all terms
have zero means:

(Azy =) = a(Ba 1 —p) +T(Az 1 — ) + & (8)

If 6 lies in the cointegration space (6 = —au), then v = 0 and so x has a growth rate
of zero.

The 1(0) system in (8) can be re-expressed as a VAR in the N + r zero-mean
variables (Az;—v) and (8'z;_;—p), similar to Hendry and Mizon (1993, equation (5)):

[ I AR b Y U T

noting that 3y = 0. Although the errors in this (N + r)-dimensional system have
a singular distribution, (9) is convenient for retaining relevant transformations of
variables and for generating multi-step ahead forecasts of the transformed variables.

8



Moreover, the empirical example in Section 6 uses it to calculate the impulse responses
of the cointegrating combinations as well as of the growth rates. Many mappings of
(9) into N dimensions yield a nonsingular distribution. Some are interpretable as
(N —r) common trends and 7 cointegrating vectors, but they are not unique.

2.2 Long-run Weak Exogeneity

Cointegrating vectors are often parameters of interest, and weak exogeneity of z; for
them can aid in conducting inference. Johansen and Juselius (1990), Davidson and
Hall (1991), Boswijk (1992, 1995), Dolado (1992), Johansen (1992a, 1992¢), Urbain
(1992), Hendry and Mizon (1993), and Hendry (1995¢) discuss testing weak exogeneity
in cointegrated systems. From those papers, this subsection extracts two key results,
presented as Lemmas 1 and 2; and it shows how the choice of parameters of interest
affects the conditions for weak exogeneity.

Partitioning of the variables and matrices in (5) facilitates discussing weak exo-
geneity, Granger causality, and their relation to policy analysis. With partitioning,

(5) is:
Ay, 61 e%] ' Iy E1¢
{Azt] {52]+{a2]ﬁxt1+[F2]Ax“+[€2t]
{51}+{0411 0412} {5’11 ﬁig} {%1]
b2 Qg1 (g2 5,21 5,22 Zt—1
4 { 'y T } { Ay } i { €1t } . (10)

[y T'ao Az €t

Parameters are partitioned by variable and (for a and () by cointegrating vector.
Specifically, 3" is divided by row into two subsets of cointegrating vectors, 3] and [,
which are themselves partitioned by variable as (3}, : B15) and (85, : B5)-

The VAR in (10) may be reparameterized as the conditional and marginal distri-
butions in (3):

Ayt = (61 — D62) + (041 - Dag)ﬁlﬁt_l + DAZt + (Fl - DFQ)AJ?t_l —+ U1y

= (61 — Db2) + [(a118; + @12051) — D(aa1 811 + 2205)) Y-
+ [(Oénﬁlu + 0412ﬂ’22) - D(Oé21ﬂ112 + 0422322)]2%71

-+ DAZt + (PH — DFgl)Ayt_l + (Plg — DFQQ)AZt_l + V1t (11)
Azy = Og+afw + oAz g + ey
= Oy + (@) + a9fy)yi + (a2181s + a2285) 21
+ To1Aye 1+ Tz 1 + e, (12)

where D = 21222_21, Vit — €1t — D52t7 and so Var(vlt) = Qll = 211 — 21222_21221. We
assume that 3, and 3, each contain at least one cointegrating vector (r; > 0,75 > 0),

9



that (3, enters the first block (aq; # 0), and that D # 0 (implying contemporaneous
correlation between y and z), as these assumptions generate situations of particular
interest.

Different conditions for the long-run weak exogeneity of z; exist, depending upon
the parameters of interest.

Lemma 1 Suppose that the parameters of interest are 3. Then, z is weakly exo-
genous for B if and only if as = 0 (i.e., agy = 0 and ags = 0). [See Johansen
(1992a).]

The condition ap, = 0 ensures that 3 does not appear in the marginal distribution for
z;. However, the parameters of interest might be only a subset of the cointegrating
vectors, in which case other conditions also obtain weak exogeneity.

Lemma 2 Suppose that the parameters of interest are 3;. Then, z; is weakly exo-
genous for By if asn =0 and (13 — Dasy) = 0. [See Hendry and Mizon (1993).]

These conditions ensure that 3, enters the conditional model but not the marginal
one. These conditions are sufficient but not necessary; and Ericsson (1995, Sec-
tion 3.1) presents an alternative set of sufficient conditions for the weak exogeneity
of z for 3, noting that ¥15 (and so D) need not be zero in those conditions. Harbo,
Johansen, Nielsen, and Rahbek (1998, Section 5, this issue) illustrate empirically how
the choice of parameters of interest can affect which variables are weakly exogen-
ous. Equations (11)—(12) also indicate how the choice of policy rule can affect weak
exogeneity. For instance, responses by the policy variable Az; to past disequilibria
(B@i_1 — py) induce a failure of weak exogeneity, which could imply inefficient or
inconsistent inference on [, if estimation is of the conditional model alone.

Empirically, weak exogeneity in cointegrated systems arises with considerable reg-
ularity, as documented by Ericsson and Irons’s (1995, pp. 298-301) literature search
on super exogeneity and by the empirical articles reprinted in Ericsson and Irons
(1994). Depending upon how many variables are included in z, weak exogeneity may
entail a conditional subsystem or a conditional single-equation model. Juselius (1998,
this issue) and Section 6 below are of the first type, whereas de Brouwer and Ericsson
(1998, this issue) is of the second. Even without weak exogeneity, single-equation
modeling may be feasible by treating the system estimates of the cointegrating vec-
tor(s) as given; see Juselius (1992), Durevall (1998, this issue), and Metin (1998, this
issue).

2.3 Granger Causality

The conditions for Granger non-causality in (10) can be stated simply.

10



Lemma 3 In (10), y does not Granger-cause z if and only if (o187, + qa285;) = 0
and Fgl =0.

Suppose that the policy instruments are z and that the target variables of economic
policy are y. These conditions for Granger non-causality are unlikely to be satisfied in
practice because past values of target variables typically influence the present choice of
the policy instruments’ values. For example, recent past inflation is likely to influence
the tightness of monetary and fiscal policy. Actual policy simulations may or may not
assume such feedback: all the policy simulations in the papers in Bryant, Henderson,
Holtham, Hooper, and Symansky (1988) assume Granger non-causality in the policy
rule (see their p. 29), whereas the papers in Bryant, Hooper, and Mann (1993) focus
on the presence of feedbacks in the policy rule (see their pp. 13, 20).

Economic policy typically assumes that changes in the instruments z affect the
targets y. The converse has immediate repercussions.

Lemma 4 In (10), z does not Granger-cause y if and only if (11075 + c12555) = 0
and I'1s = 0.

Without Granger causality from instruments to targets, policy is unlikely to be effec-
tive. The conditions for Granger causality, which are directly relevant for assessing
the feasibility of economic policy, are features of the joint distribution of y; and z,
conditional on their past values. These conditions are unrelated to those for weak
exogeneity, which pertains to statistical inference in a conditional model. For further

details on testing causality in I(1) systems, see Mosconi and Giannini (1992) and
Toda and Phillips (1993, 1994).

2.4 Policy, the DGP, and the Econometric Model

Often, the objective of economic policy is to shift the mean of the target variables y
to a desired value (or within a desired range) by changing the instruments z. In
such a situation, one set of sufficient conditions for reliable policy analysis is that
the econometric model coincides with the DGP both before and after the policy
intervention, and that the policy is feasible. The first of these conditions is unlikely to
be fulfilled in practice, and no criteria currently exist for determining whether or not it
is fulfilled. Consequently, necessary conditions with testable implications are typically
examined. The hypotheses of exogeneity, causality, and invariance are testable in
econometric models, so important aspects of conditional econometric models may be
assessed prior to their use in policy analysis.

The hypotheses of exogeneity, causality, and invariance have implications for pol-
icy analysis with a macro-econometric model, even if that model is treated as a
deterministic, numerical, accounting structure. Causal links from the instruments
to the targets are essential for policy to have an effect; and unchanging parameters
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are needed for that effect to be as anticipated. On the latter, a model might well
perform according to its established operational characteristics when forecasting over
a short horizon or analyzing small policy adjustments. For active interventions such
as financial deregulation, new taxes, and monetary union, more stringent criteria are
likely to be required. Tests of exogeneity help assess how well a model will predict
the actual outcome.

The following conditions are typically necessary for such policy analysis to be of
value.

1. The policy instruments and the targets have genuine causal links; see Granger

and Deutsch (1992).

2. The model represents the economy closely enough in relevant attributes that its
policy predictions reasonably match outcomes. Empirically testable conditions
include congruency (the model is coherent with all available information) and
encompassing (the model is undominated by alternative models); see Hendry
(1995a) and Bontemps and Mizon (1997).

3. The change in policy does not alter the econometric model in a self-contradictory
way; see Lucas (1976).

4. The policy experiment is feasible in reality and within the econometric model.

9. The policy instruments are manipulable, in that the policy agency can set the
instruments to those values desired for the policy experiment.

The econometric concepts of causality, congruence, encompassing, exogeneity, and
invariance are associated with conditions 1, 2, and 3. Under condition 1, moving y by
changing z may occur in three distinct ways: contemporaneously, with a delay, and
in the long run, as (11) clarifies. The applicability of policy, however, depends on the
actual causal links, and not on the apparent links in the econometric formulation. Al-
though such a point seems obvious, models are often applied to policy issues without
explicit testing of their policy relevance. Tests of super exogeneity may shed light on
their relevance by focusing on the invariance of the econometric relation under his-
torical interventions and on the significance of the claimed connections. Condition 3
leads to Section 3, immediately below. Feasibility (in condition 4) concerns the rela-
tionship between the policy experiment, the DGP, and the econometric model; and
manipulability (in condition 5) is a feature of the policy instruments. Manipulability
differs from controllability, which has a specific meaning in the engineering literature.
Here, manipulability corresponds to altering (,, in the marginal distribution of 2, as
might arise if (,, were the base rate set by a central bank and 2, were a very short-
term interest rate. The same policy might be infeasible for a long-term interest rate
if international arbitrage determined the latter.
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3 The Lucas Critique

Lucas (1976) criticizes using an econometric model for policy analysis if implementing
the policy under evaluation would alter the structure that the model was attempting
to capture. Lucas considers examples in which agents’ expectations of policy behavior
enter into their optimization problem, and so parameters relating to policymakers’
rules appear in the agents’ first-order conditions. Specifically, if agents form model-
based expectations about z when planning y, then \; depends on Ay, and A; will
change if policy alters Ay through changes in (,,. Without super exogeneity, such
unmodeled changes in \; are likely to confound conditional policy analysis. More
generally, behavioral parameters may not be invariant to some policy interventions.
Simply treating the econometric model’s coeflicients as constant does not, ensure their
constancy when a policy is implemented. Even if weak exogeneity holds, parameters
may change when policy rules alter. In essence, the Lucas critique questions whether
or not an econometric model isolates invariants of the economic process. This section
briefly reviews recent research on the Lucas critique, drawing on Section 1.4. See
Frisch (1938), Haavelmo (1944), and Marschak (1953) inter alia for earlier discussions
on invariance and on what is now called the Lucas critique.

The Lucas critique concerns two related properties of the conditional and marginal
models’ parameters: constancy and invariance. As suggested by Gordon (1976,
pp. 48-49) and developed by Hendry (1988) and Engle and Hendry (1993), these
properties provide two approaches for testing the Lucas critique.

1. Test for the constancy of A\; and of \s. If \; is constant but \; is not, then )\,
is invariant to the interventions that occurred, so the Lucas critique could not
apply. [See Hendry (1988).]

2. Develop the marginal model until its parameters are empirically constant. For
instance, model the way in which )y varies over time by adding dummies or
other variables to the marginal model. Then, test for the significance of those
dummies or other variables in the conditional model. Their insignificance in the
conditional model demonstrates the invariance of A\; to the modeled interven-
tions, whereas their significance shows the dependence of A; on Xs. [See Engle
and Hendry (1993).]

Provided that the parameters of interest can be retrieved from A; alone, the invariance
of A\; implies the super exogeneity of z;.

The empirical presence of super exogeneity refutes the Lucas critique in practice.
Under super exogeneity, expectational models such as those proposed by Lucas could
not explain why A, remained constant while Ay changed, and so could not adequately
explain the data. The Lucas critique as a possibility theorem is not empirically
refutable; but, through that theorem, its assumptions generate testable implications.
Whether the Lucas critique applies for a specific economic relationship is thus an
empirical issue.
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A literature search in Ericsson and Irons (1995) of articles citing Lucas (1976) finds
virtually no substantiating evidence for the empirical relevance of the Lucas critique.
In an additional literature search of articles citing Engle, Hendry, and Richard (1983),
Hendry (1988), and Engle and Hendry (1993), Ericsson and Irons (1995) uncover
numerous models with empirical super exogeneity, with those models spanning many
sectors of several countries’ economies. Economically, super exogeneity may arise if
agents form expectations without using models, e.g., because information is costly or
because the benefits from model-based expectations are low. Hendry (1988; 1995a,
Chapters 14 and 15), Favero and Hendry (1992), Engle and Hendry (1993), and
Ericsson and Irons (1995) provide further discussion.

Fundamental difficulties may arise if policy experiments violate pre-existing exo-
geneity conditions. Empirically, policy might alter the exogeneity of a variable, as
perhaps in the switch from fixed to floating exchange rates. A conditional model
is unlikely to be reliable in such a situation, at least not without more information
about its properties than is usually provided. Moreover, policy analysis might make
a counterfactual assumption about exogeneity. Section 4 considers one such situation
— inversion of an econometric equation — and shows what problems arise.

4 Inversion of an Econometric Equation

An econometric equation is sometimes inverted to determine the settings of policy
variables z as a function of target values for y. For example, money-demand equations
are often inverted to obtain the price level, transforming M = kPI to P = M/(kI) in
a standard notation. Inverting money-demand equations to obtain prices is common
among monetarists and macroeconomists, whereas inversion to obtain the interest
rate (implicit in k) is common among macro-modelers. For examples, see Friedman
and Schwartz (1982, Chapter 2), Hallman, Porter, and Small (1991, pp. 842ff), and
Barro (1997, pp. 184ff, 278ff) on the former, and Fair (1984, pp. 319-323) and Edison,
Marquez, and Tryon (1987, pp. 130-131) on the latter. Inversion may occur prior to or
after estimation: depending upon the DGP, each may have unfortunate consequences
for policy analysis, as Sections 4.1 and 4.2 discuss. Detailed expositions appear in
Hendry (1985), Ericsson (1992, Section 2C), and Engle and Hendry (1993; 1994,
Appendix).

4.1 Inversion Prior to Estimation

Inversion prior to estimation can imply parameter nonconstancy, the loss of weak
exogeneity, alteration of the inverted coefficient, and invalid exclusion restrictions.
Such inversion corresponds to an alternative factorization for the joint density (3),
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namely:

JeWe, ze | Xeo1,0:) = fay(ze | ye, Xeo1, &) - fu(We | Xeo1, b)), (13)

where f,, () is the conditional density of 2, given y, and X; 1, fy(-) is the marginal
density of y; given X; i, the corresponding parameters are ¢, = (¢, : ¢5,) = g*(6,),
the function ¢g*(-) is a one-to-one mapping from 6 to ¢, and Ay (and so ) is al-
lowed to be nonconstant (A; = Ag¢). The conditional model fy.(-) in the original
factorization (3) is assumed constant, although its affiliated marginal model f.(-) is
nonconstant through \y;. Because (¢, : ¢5,) depends upon all elements of (A} : Ag)
through 6;, in general neither the conditional model nor the marginal model in (13)
has constant parameters. This lack of invariance poses problems for policy analysis.
It also provides a modified approach for testing super exogeneity and causality, as
Hoover and Sheffrin (1992) propose.

A dynamic bivariate normal distribution highlights specific difficulties of inversion
for policy analysis. Suppose that the original factorization, corresponding to (3),
obtains:

Yt = DZt + V1t (14)
Zt =  ay + AQ(L)xt_l + E9t, (15)

where €(vyeh,) = 0 by construction, ay, is a variable that can be set by the policy
agency, As(-) is a k x N matrix polynomial of order s, Ay(L)x; 1 captures the
dynamics in (15), and m = k = 1; cf. (4). The conditional model (14) thus omits ay,
and dynamics, which are testable exclusions.

The parameterization (D, €7, As(-),¥92) in (14)—(15) sustains the weak exo-
geneity of z for (D,Qy) in (14). If (D,€4;) is also invariant to interventions in
(As(+), Xa2), then z is super exogenous for (D, Q). If Ag(L) = 0 and z is weakly
exogenous for (D, €);;), then z; is strongly exogenous for (D, ;).

Direct inversion of the conditional model (14) yields:

Zt = D_lyt — D_l’Ult. (16)

Although (16) is algebraically correct, (16) is not a conditional model for z,. That
(reverse) conditioning, as in (13), actually obtains:

% = DBoas + BoAs(L)xi_1 + Biy, + vay (17)
v = Dag + DAy(L)xy 1 + 1, (18)

where &(vye,) = 0 from conditioning, By = Iy — B1D, By = 9y D'(Q41+ DY9y D') L,
and Var(vg) = Qoo = Yoo — Y0y X1 810,

In (17), y; is not weakly exogenous for either (B, By) or the original parameters
(D, €1) because the six sets of parameters (By, By, As( ), Q2, D, 311) in the repa-
rameterized system (17)—(18) are linked by cross-equation restrictions. Additionally,
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By # D! unless €;; = 0; or, equivalently, the coefficient on 3, in the conditional
model (17) is not equal to the coefficient on y,; in the inverted model (16) unless (16)
is an identity. Finally, the conditional model (17) includes ay and X;~}, whereas
the inverted equation (16) excludes those variables. This difference arises because
the original conditional model (14) explicitly excludes ay; and X/ ~7. If ag; and X[ ¢
entered (14) unrestrictedly, either direction of conditioning could sustain weak exo-
geneity for some choice of parameters of interest, and weak exogeneity would not
be testable directly. Weak exogeneity could be tested indirectly through testing for
super exogeneity (as in Section 3), and an incorrect choice of factorization could still
induce poor policy recommendations through violation of super exogeneity.

4.2 Inversion After Estimation

Inversion after estimation also affects model use, even if such inversion does not alter
the underlying equation parameters. Estimated models are sometimes treated as
deterministic accounting algorithms and their equations manipulated accordingly, as
when target variables in a model are “exogenized”. The appropriateness of doing so
depends upon whether or not the underlying stochastic structure is preserved. The
unconditional expectation of (14) illustrates:

S(yt) = DS(zt). (19)

If z; is controlled by the policy agency and D # 0, inversion of (19) permits calculating
the value z; needed to achieve the desired target y; in expectation:

Z = Dilg(gt)- (20)

Choosing that z; delivers ¢; on average, assuming super exogeneity of z; for D under
that intervention.

Although closely related to (20), direct inversion of (14) could alter the covariance
structure of the system. That inversion is:

Z = D_l(yt — V1), (21)

where £(zv),) = 0 in fact, and E(y,0},) # 0. Relatedly, for nonlinear systems,
unconditional expectations corresponding to (19) are often analytically intractable
and so are approximated by averaging stochastic simulations. If inversion precedes
simulation, then the effect is equivalent to (21). To preserve the covariance structure,
a procedure might fix z; at a trial value and simulate £(y;), iterating on z; until the
desired (average) target value for y; results.

If y and z are I(1) and cointegrated, inversion of the cointegrating relation might
seem innocuous because the particular normalization in a cointegrating regression
need not matter (at least asymptotically), even prior to estimation; see Engle and
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Granger (1987). Inversion does not alter the direction of causality, however, so the
inverted relation need not be economically interpretable. Consider a simple, mainly
static version of the conditional and marginal models in (11)—(12):

Yt = bIZt + V1t (22)
Azt = Eat, (23)

where b is nonzero and is defined such that 3 = (1 : —'). This system’s cointegrating
relation implies £(y; —b'z;) = 0. A cointegrating relation, however, is simply that — a
relation — and it does not specify causal direction. Renormalizing the cointegrating
relation on b does not necessarily imply that y; determines z;. In (22)—(23), for
example, y; is generated conditional on z;, and z; is a pure random walk. In a more
fully dynamic DGP, such as (11)—(12), Granger causality may exist in both directions,
with no single direction of causation exclusively present.

The analytics of inversion have immediate implications for policy analysis, as this
section’s motivating example of money demand highlights. Economic policy often
centers on the determinants of inflation. Non-invertibility of a money-demand equa-
tion suggests modeling inflation directly, rather than attempting to do so indirectly
through modeling money demand. In this issue of the JBES, de Brouwer and Ericsson
(1998), Durevall (1998), Juselius (1998), and Metin (1998) all model inflation directly.
Doing so still allows examining the role of money in determining prices, but that ex-
amination is separate from modeling money demand itself; see also Juselius (1992).
Modeling both prices and money also follows directly from the initial joint density (3),
which implies distinct equations for money and prices, whether formulated as a joint
density or in a conditional /marginal factorization.

5 Impulse Response Analysis

Investigators often use impulse response analysis to ascertain responses by one set of
variables to changes (“shocks”) in another set of variables, where the latter set may
include policy instruments. This section summarizes the analytics of impulse response
analysis (Section 5.1), comments on its usefulness in policy analysis (Section 5.2), and
examines the role of exogeneity in impulse response analysis (Section 5.3). See Sims
(1980), Runkle (1987), and Liitkepohl (1991) inter alia for further details on the use
of impulse response analysis in economics.

5.1 A Summary

Empirical impulse responses are typically calculated from a finite-lag VAR with possi-
bly integrated variables and with various deterministic series such as a trend, seasonal
dummies, and an intercept. The essential features of impulse response analysis can
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be ascertained from a simpler structure, such as (4) as a stationary first-order VAR
(s = 1) with its only deterministic series being an intercept (K¢; = 6). The moving
average (MA) representation of this stationary system is:

r, = (Iy—AL) Y (6+¢)

= io: Ch(6 + 5t—h)
= C(L)(6+ &), (24)

where A = A;, the C}, are N x N matrices of moving average coefficients, and C( -)
is the corresponding matrix polynomial. Higher-order vector autoregressive systems
can be accommodated through companion-form representation, at the expense of
complicating the algebra without yielding further insights. Unit roots in cointegrated
systems can be accommodated by mapping from I(1) to I(0) variables, as in (9). We
consider only invertible MA representations: Hannan (1960, 1970) and Whittle (1963)
inter alia discuss the relative merits of invertible and non-invertible MA processes.
The matrix of responses of x;.; to unit impulses in each of the elements of &,

equals Cp:
8$t+h

/
Oe,

Plotting a typical element Ox;,./0c; against h for h = 0,1,2,..., H graphically

= C, = (A" (25)

presents the impulse response function of z; to £;. There are N? such graphs corre-
sponding to i,j = 1,2,..., N. Although (25) is a convenient mathematical relation,
the literature also often interprets € as economic shocks (rather than as just residu-
als), and so interprets the impulse responses 0z, /0¢} as the responses of z to those
economic shocks. An alternative interpretation is that the impulse responses measure
the adjustment of z,,; to a policy action a;, where a, = ¢ for 7 =t (¢ being a unit
vector), a, = 0 for 7 # t, and § + a; replaces § in (24). Such policy actions shift
the system’s intercept and are (by assumption) autonomous. Although dz;,,/0¢; and
Oxy,p,/0a; represent impulse responses, responses also can be calculated for persistent
changes, e.g., with €, # 0 or a, # 0 for 7 > t.

Analytically, 0z, /0¢) equals 0x,.p/0a;. Even so, these two responses differ not
only in their interpretations but also in their caveats. The first response measures
the adjustment of x to changes in the errors e consistent with their distribution
[namely, INy (0, )], in effect requiring that the empirical residuals closely match the
actual underlying economic shocks. They need not. The second response measures
the adjustment of x to autonomous shifts a in the system’s intercept, thus assuming
that the VAR’s parameters are invariant to the class of interventions defined by a.
Such interventions may not have occurred in sample and, even if they have, the VAR
may not be invariant to them. Under each interpretation, violation of the underlying
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assumptions could seriously mislead policy analysis, with (e.g.) incorrect signs for
impulse responses resulting. See Hendry and Mizon (1998) for further discussion.
The formulation in (25) assumes a unit impulse for each shock ;. That ignores
differences in variability and units of measurement across the corresponding variables;
and, by perturbing each ¢; while holding constant all other €;, (j # ), it ignores the
(usual) nondiagonality of ¥, the covariance matrix for €,. The first issue is often
addressed by using impulses equal to the residuals’ standard deviations. Orthogonal-
ization and (more generally) identification schemes aim to address the second issue;
see Bernanke (1986), Blanchard and Quah (1989), and King, Plosser, Stock, and Wat-
son (1991). These adjustments to (25) are all particular cases of impulse response
analysis applied to the original VAR premultiplied by a nonsingular transformation
matrix P’
x; = A'z; | +¢; e ~INy(0,Q), (26)

where § = 0 (for simplicity), z} = P'z;, A* = P'A(P')!, e = Py, and Q = P'SP.

The transformed impulse response matrix is:

*
Oy p
*/
Oz}

_ (A*)h
— P/(A)h(P/)—l

0T 1p

- P
og},

(P, (27)
which differs from the raw response matrix in (25) for P’ # Iy. Orthogonalized
impulse response analysis sets P such that () = Iy. Structural VAR analysis sets
P to correspond to an identified structure, which may have non-orthogonal errors.
Premultiplication of (27) by (P')~! yields (0, n/0e})(P')™! [= Oxyyp/0e}], which
may be of more interest than either (25) or (27), as 0z, /0¢;’ gives the response of
the original variables x to the transformed impulses £*.

5.2 Comments

Prior to discussing the role of exogeneity in the analysis of impulse response functions,
several general comments are germane. They pertain to dynamics, model specifica-
tion, model estimation, structure, and constancy.

First, the roots of the model’s companion matrix determine the model’s dynamic
properties, so impulse response analysis is an alternative way of presenting this infor-
mation. In this vein, de Brouwer and Ericsson (1998, Figures 3b and 3d, this issue)
plot normalized lag distributions for their conditional model of inflation, in effect
calculating impulse responses for a partial (conditional) system.

Second, impulse response functions describe the dynamics of a model, not the
dynamics of the variables in the model. For example, suppose that the DGP is a mul-
tivariate random walk. The impulse response functions calculated from an estimated
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VAR will rarely reveal the pure persistence of the shocks because the estimated roots
will not be exactly unity. Model mis-specification can induce additional discrepancies
between the properties of the model and those of the variables.

Third, impulse responses provide no additional information for evaluating the
model, beyond what is available from the coefficient estimates of the model. See,
however, Faust (1998), who proposes assessing the robustness of impulse responses to
alternate identification schemes.

Fourth, model specification, as well as the data properties themselves, affects
impulse response functions. In particular, specifying whether a variable is weakly or
strongly exogenous can directly affect impulse responses, independently of whether
that variable is weakly or strongly exogenous.

Fifth, empirical impulse response functions are determined by a model’s estimated
parameters, regardless of the corresponding estimator’s properties or the model speci-
fication. Making policy inferences from an empirical impulse response analysis thus
places a premium on having a congruent model that encompasses rival alternatives
and is invariant to extensions of the information set used. Relatedly, estimated im-
pulse responses at long horizons may be inconsistent if obtained from an unrestricted
VAR with cointegrated variables; see Phillips (1998). Ignoring cointegration by differ-
encing all the variables also generates problems by confounding short-run and long-run
properties, which are central to impulse response analysis.

Sixth, if a model is congruent, encompassing, and invariant, it may contain some
structure. However, a model with structure does not imply that the corresponding
residuals are structural, as they usually are not invariant to extensions of the infor-
mation set unless (e.g.) the model coincides with the DGP. Increasing or reducing the
dimension of x directly affects €, and ¢ is also indirectly affected by conditioning on
or by partialing out putative exogenous variables. See Hendry (1995b, p. 1632).

Seventh, economic data often appear to have structural breaks, so a complete
(or closed) VAR is unlikely to be empirically constant. Impulse responses are inher-
ently sensitive to parameter change, both from in-sample nonconstancy and because
impulse response analysis assumes super exogeneity for the counterfactual shocks
generating the responses. Impulse responses from a nonconstant (or non-invariant)
VAR are clearly problematic to interpret for policy analysis. Notwithstanding that
difficulty, empirical constancy of the estimated VAR is rarely checked in impulse re-
sponse analysis. A conditional model, in contrast to a complete VAR, may achieve
constancy, precisely by conditioning on those variables generating the (shared) breaks
in the time series. That close relation between constancy, invariance, and super exo-
geneity motivates the remainder of this section, which examines how the assumed
and actual exogeneity of variables affects impulse response analysis.

20



5.3 Exogeneity and Impulse Response Analysis

Exogeneity has several specific implications for impulse response analysis. As in
Section 2, consider the conditional /marginal factorization. For a first-order stationary
VAR, that factorization generates:

28
2 0 Aoy A (28)

z
{ Y ] _ { D (An - DA21) (A12 - DAQQ) ] y ! + { U1t }
where z; need not enter the conditional distribution (e.g., policy may act only at a
lag). Irrespective of the actual exogeneity status of z;, the equation for y; in (28)
implies that modeling the conditional distribution alone will result in the following
impulse response matrices:

8yt+h

o . h
87}/” - (All DAQI) (29)
8yt;h _ (All . DAQI)h(PT/)—l’ (30)
ovyy

where ’UL = Puy,, and P! is an m x m matrix such that POy Pt = I,,,.

The impulse responses for y derived from the system equal those derived from the
conditional model under the following (sufficient) conditions. From (25) and (29), the
raw impulse responses are equal if Ay; = 0, i.e., y does not Granger-cause z. In effect,
strong exogeneity ensures that the parameters for multi-step ahead calculations are
isolated in the conditional model. From (27) and (30), the orthogonalized impulse
responses are equal if Ay; = 0 and if, in addition, X2 = 0 (i.e., y; and z; are con-
temporaneously uncorrelated) and Py is set to zero (allowing P; = P'). Although
sufficient, but not necessary, these conditions do give a sense for the sorts of restric-
tions required for partial and complete systems to yield the same impulse responses.
Conversely, weak exogeneity of z, for A\; is not sufficient to ensure equivalence of im-
pulse responses from the conditional model and the system, whether they are raw or
orthogonalized responses.

At a more general level, many identification schemes for a structural VAR (in-
cluding orthogonal ones with triangular P) correspond to conditional/marginal fac-
torizations. If regime shifts occur in the policy variables, then (essentially) at most
one factorization isolates the invariants of the process, as follows from Hendry (1988)
and the preceding discussion of super exogeneity. Tests for super exogeneity are thus
a promising direction for identifying a VAR empirically, rather than relying on ar-
bitrary (and untestable) identification assumptions. Put somewhat differently, even
though factorization orthogonalizes, the corresponding transformed variables z; need
not be weakly exogenous for the parameters of interest, and the latter might fail to
be invariant to (possibly policy-induced) regime shifts in the marginal process for z;.

21



6 A Small Empirical Policy Model for the United
Kingdom

This section illustrates the feasibility of and issues in conditional economic policy
analysis. The analysis begins with a four-equation system of money, prices, output,
and interest rates in the United Kingdom, from which Sections 6.1 and 6.2 develop
two conditional subsystems and test for super exogeneity via parameter constancy
tests. Section 6.3 compares impulse responses from the complete system and the two
subsystems.

The data are nominal narrow money M1 (M, in £ millions), real total final ex-
penditure (TFE) at 1985 prices (7, in £ millions), the TFE deflator (P, 1985 = 1.00),
and the (learning-adjusted) opportunity cost of holding M1 (R, per cent per annum,
expressed as a fraction). The data are quarterly and span 1963Q1-1989Q)2. Allowing
for lags, estimation uses the 100 observations 1964(Q3-1989(Q2. Money, TFE, and
the deflator are seasonally adjusted, but R is not. Lowercase letters denote logs of
the corresponding uppercase variables. Hendry and Ericsson (1991) and Ericsson,
Hendry, and Tran (1994) provide further details on the data.

Model formulation follows Hendry and Mizon (1993) and Hendry and Doornik
(1994). The variables modeled are m — p, ¢, Ap, and R, with an intercept, a linear
trend (restricted to the cointegration space), and two dummy variables, DOUT and
DOIL. These dummies aim to capture output shocks from UK government policy and
the two oil crises. The stochastic series appear to be I(1), although R is probably 1(0)
after 1984, when it becomes a differential between competing interest rates. Hendry
and Doornik (1994) model the joint behavior of the four stochastic variables, starting
with an unrestricted fourth-order VAR and simplifying that VAR to an unrestricted
second-order VAR and thence to an over-identified dynamic system, following the
reduction approach of Hendry, Neale, and Srba (1988), as extended for cointegration
by Hendry and Mizon (1993). Hendry and Doornik find two cointegration vectors,
one for money demand and one for goods demand. The former enters only the
money equation, whereas the latter enters the remaining three equations. Hendry and
Doornik’s final dynamic model appears to be congruent with the sample evidence,
excepting some possible changes around the mid-1970s in the error variances for
the inflation and interest-rate equations. Additional analyses of this dataset include
Ericsson, Campos, and Tran (1990), Boswijk (1992), Johansen (1992e), Ericsson,
Hendry, and Tran (1994), and Harbo, Johansen, Nielsen, and Rahbek (1998, this
issue).

The current empirical analysis aims to implement the theoretical notions from
the earlier sections, so two alternative conditional models are developed from the
unrestricted four-variable second-order VAR, and impulse responses are constructed
from those models and from the original VAR. In the first conditional subsystem,
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the interest rate is treated as weakly exogenous. The interest rate appears to be
empirically weakly exogenous for the money-demand cointegrating vector but not
for the goods-demand cointegrating vector. That said, feedback from goods demand
onto the interest rate is small numerically and only barely significant statistically,
so weak exogeneity of the interest rate for both cointegrating vectors appears to
be approximately satisfied empirically. In the second conditional subsystem, money
(rather than the interest rate) is treated as weakly exogenous, and a simplified model
is again constructed. Small multiples of graphs summarize the subsystems’ constancy
properties and the impulse responses.

6.1 A Money-demand Formulation

This subsection tests for cointegration in the first conditional subsystem, calculates
various diagnostic statistics for the resulting model, and demonstrates super exogen-
eity. The first panel in Table 1 reports cointegration test statistics for the three-
equation, second-order VAR of m — p, i, and Ap, conditional on R. The dummies
(DOUT and DOIL), AR;, and AR, ; enter unrestrictedly, whereas the trend and
R;_, are restricted to lie in the cointegration space. The results support two cointe-
grating vectors, similar to those found by earlier researchers. The second and third
panels in Table 1 report unrestricted standardized estimates of those cointegrating
vectors and their associated feedback coefficients. The first cointegrating vector is
recognizably the money-demand relation in Hendry and Ericsson (1991) and Hen-
dry and Doornik (1994), with a near unit income elasticity, large negative long-run
semi-elasticities for inflation and the interest rate, and a negligible trend. The sec-
ond cointegrating vector is similar to Hendry and Doornik’s relation for aggregate
goods demand, with the deviation of output from trend being positively related to
inflation and negatively related to the interest rate. As shown by Harbo, Johansen,
Nielsen, and Rahbek (1998, this issue), this cointegration analysis does not depend
on nuisance parameters if weak exogeneity is valid.

The following restrictions were placed on the cointegrating vectors in Table 1.
For money demand, income has a unit elasticity, Ap and R have equal effects (and
equal to +7), and the trend has a zero coefficient. The unrestricted coefficients
on Ap and R are both numerically close to +7, although imposing them as such
has no direct economic interpretation, so this restriction serves mainly to obtain
greater parsimony. For goods demand, the trend coefficient is imposed at 0.0063
(equal to the sample mean of Ai), real money has no effect, and Ap and R have
coefficients of —4 and +1, interpretable (prior to 1985) as an effect from the “real
interest rate” R — 4Ap. These restricted cointegration vectors were then tested for
lying in the cointegration space. The associated test statistic is asymptotically x?(-):
the hypothesis is linear, cointegration rank is preserved, and the system is in I(0)
space. The value of the statistic is x*(6) = 1.86, insignificant at the 5% level. The last
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Table 1. A Conditional Cointegration Analysis of UK Money Demand Data

Variables in the cointegrating relations

Statistic type m—p 1 Ap R trend

Summary statistics and cointegration test statistics

Null hypothesis r=20 r<1 r<2
Eigenvalue 0.55 0.13 0.08
Maximal eigenvalue 74.5"* 13.0 7.9
95% critical value 25.5 19.0 12.3
Trace eigenvalue 95.3** 20.8 7.9
95% critical value 49.6 30.5 15.2

Unrestricted standardized eigenvectors 3’

Variable m—p 1 Ap R trend
1 —0.99 7.39 7.64 —0.000563
—0.07 1 -3.10 0.68 —0.006019

Unrestricted standardized adjustment coefficients «

m—p —0.089 —0.060
? —0.022 —0.099
Ap —0.001 0.102

Restricted standardized eigenvectors 3’

Variable m—p 1 Ap R trend
1 -1 7 7 0
0 0.25 -1 0.25 —0.001575

Restricted standardized adjustment coefficients «

m—p —0.099 —0.229
(0.011) (0.206)
i —0.024 —0.114
(0.008) (0.153)
Ap —0.000 0.315

(0.005) (0.092)

NOTE: Johansen’s maximal eigenvalue and trace eigenvalue statistics for testing cointegra-
tion are adjusted for degrees of freedom. The null hypothesis is in terms of the cointegration
rank 7 and, e.g., rejection of 7 = 0 is evidence in favor of at least one cointegrating vector.
Critical values for the trace statistic are taken from Harbo, Johansen, Nielsen, and Rahbek
(1998, Table B.1, this issue). No critical values for the max statistic have been tabulated for
conditional models, so the reported critical values are those from Osterwald-Lenum (1992,
Table 2*) for a complete system. Asterisks * and ** denote significance at the 5% and 1%
levels respectively, and estimated standard errors appear in parentheses ( - ).
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two panels in Table 1 report the corresponding restricted values of the cointegrating
vectors, their associated feedback coefficients, and the standard errors for the latter.
The constructed equilibrium-correction terms from 'z, are:

C1t = My — Pt — Z.t + 7Apt + 7Rt —0.207 (31)
e = 0.25(i — 0.0063t) — Ap, + 0.25R, — 2.7516. (32)

The dominant long-run feedback effects are of ¢; in the money equation and of ¢, in
the inflation equation.

This system determines the five variables (A(m — p);, Aiy, A%py, ¢y, cor), similar to
(9). The formulation in the differences of the original variables, together with the equi-
librium corrections, permits a more useful impulse response analysis in Section 6.3.
The I(0) conditioning variables comprise A(m — p);_1, Aiy_1, A%pi_1, ARy, ARy,
C1i—1, Coi—1, DOUT, DOIL, and an intercept. The correlations between actual and fit-
ted values for the stochastic variables are 0.85, 0.69, and 0.69 respectively. Diagnostic
tests were calculated for fifth-order serial correlation, fourth-order autoregressive con-
ditional heteroscedasticity, general heteroscedasticity, and nonnormality; see Godfrey
(1978), Engle (1982), White (1980), and Doornik and Hansen (1994). The outcomes
were satisfactory, other than some evidence of nonnormality and heteroscedasticity
in the inflation equation.

Figure 1 plots recursive statistics for checking parameter constancy in this condi-
tional subsystem. The statistics are one-step residuals with plus-or-minus twice the
corresponding equation standard errors (0 & 24;) for each equation; the scaled recur-
sive log-likelihood for the subsystem; and break-point Chow (1960) statistics for each
equation and for the subsystem, with the Chow statistics scaled by their one-off 1%
significance levels. When viewed as a set, the Chow statistics can only be taken as in-
formal diagnostics. That said, they provide greater detail about empirical constancy
than (e.g.) an unknown break-point test statistic, which intentionally aggregates over
outcomes for many possible sample splits. In particular, the Chow statistics and the
one-step residuals provide evidence on the possible nature and timing of nonconstancy
(if any), evidence that could be useful in further model development. Conversely, if
no Chow statistic in a given sequence rejects (as for the money equation), that lack of
rejection points to marked empirical constancy in the corresponding equation. The
recursive plots suggest reasonable constancy for this conditional monetary system,
albeit with the minor caveats for the inflation equation noted previously.

Section 3 sketches two procedures for testing super exogeneity: both point to
empirical super exogeneity in this conditional subsystem. The first procedure uses
evidence about parameter constancy for the conditional and marginal models. Fig-
ure 1 supports the constancy of the conditional model. In their Figure 7, Hendry
and Ericsson (1991) plot break-point Chow statistics for a marginal model of R,
demonstrating considerable nonconstancy in that model. The second procedure is
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Figure 1: Recursive statistics for a conditional subsystem of money, income, and
inflation: one-step residuals and 0 £ 24, for equations explaining A(m — p)y, Ay,
and A?p;; the scaled log-likelihood; and break-point Chow statistics for equations
explaining A(m — p);, Ai;, and A%p,, and for the conditional subsystem, with the
statistics rescaled by their one-off 1% critical values.
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Figure 2: Recursive statistics for a conditional subsystem of the interest rate, income,
and inflation: one-step residuals and 0 + 26, for equations explaining AR;, Ai,,
and A?p;; the scaled log-likelihood; and break-point Chow statistics for equations
explaining AR;, Ai;, and A?p,, and for the conditional subsystem, with the statistics
rescaled by their one-off 1% critical values.

27



the variable-addition test of Engle and Hendry (1993). To check the super exogen-
eity of (i, Aps, Ry) for the parameters of their money-demand equation, Hendry and
Doornik (1994) test the significance of four dummy variables from Engle and Hendry
(1993) and do not reject at the 5% level. Both findings on super exogeneity are con-
sistent with the money stock being endogenously determined by the private sector.
Even with super exogeneity, the determinants of money demand could and did induce
large shifts in the real money stock, which increased by nearly 100% during the last
decade of the sample.

6.2 An Interest-rate Formulation

A similar analysis was undertaken for a reverse conditioning, in which Ry, i;, and
Ap; are treated as endogenous and (m — p); as weakly exogenous. The cointegration
space now includes (m — p);—1, and A(m — p); and A(m — p),—; enter the VAR
unrestrictedly. This conditional analysis delivers one significant cointegrating relation
and one nearly significant cointegrating relation, which are similar to those shown
in Table 1. The first is recognizably the money-demand vector, but it enters all
three equations, judging from the size and significance of the feedback coefficients.
The second cointegrating vector appears to enter the equation for inflation. The
cointegrating restrictions in (31)—(32) remain statistically acceptable.

Figure 2 reports the recursive sequences for this restricted, I(0), conditional VAR.
Rejection occurs in the equations for both R and Ap during the early 1970s, and
the system break-point statistic values are significant then as well. This reverse
conditioning deleteriously affects parameter constancy in the model. Such results
are consistent with earlier econometric analysis and with the institutional structure
of the UK money market, in which the monetary authority determines the interest
rate and the private sector their desired money balances, given that interest rate.
Indeed, because analysis of the four-variable system finds i;, Ap;, and R; to be long-
run weakly exogenous for the money-demand relation in the equation for (m — p),,
conditioning on (m—p); may account for the second conditional subsystem’s relatively
poor performance.

6.3 Impulse Response Analysis

This subsection derives impulse responses for the four-variable (complete) VAR and
for each of the two conditional subsystems, in each case calculating the impulse re-
sponses of A(m — p);, Aiy, A?py, c1y, and ¢y to orthogonalized standard-deviation
shocks in the income and inflation equations. Figure 3 plots the impulse responses
for all three models in a panel representing selections from the derivative matrix
8xt+h / 85:1.

For calculating impulse responses, the first conditional model treats R; as strongly
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exogenous. That model’s orthogonal impulse responses differ substantially from those
from the unconditional model because the residuals in the interest-rate equation are
highly correlated with those of the money and inflation equations. The condition
Y12 = 0 is not satisfied, even though Granger non-causality (corresponding to the
condition As; = 0 in Section 5.3) holds empirically. The impulse responses from the
second conditional model differ substantially from those of the other two models in
numerous instances. Relatedly, i, Ap, and R empirically Granger-cause m — p, con-
trary to the assumption of Granger non-causality embedded in the impulse responses
for the second conditional model.

Many orthogonalizations violate weak exogeneity, and different exogeneity spec-
ifications directly affect impulse responses. Thus, it seems preferable to develop a
valid conditional representation and avoid the use of orthogonalized impulse response
analysis.

6.4 Summary

This section developed two conditional cointegrated subsystems from different factor-
izations of the data’s joint distribution, and then drew inferences about constancy, in-
variance, super exogeneity, the Lucas critique, model inversion, and impulse response
analysis for those two models. Tests of parameter constancy provided information
about super exogeneity, which holds in the first subsystem, but not in the second.
The second subsystem is a (partial) inversion of the first; and, as Section 4 implies,
only one factorization typically obtains a constant conditional model. The empirical
super exogeneity of the first conditional model refutes the Lucas critique in practice
and argues against inversion. Even with super (and strong) exogeneity in the first
subsystem, orthogonal impulse response analysis is still problematic because of cer-
tain nonzero contemporaneous residual covariances. These results elucidate how the
concepts of exogeneity and cointegration can help interpret and guide econometric
model use in economic policy analysis.

At a more general level, econometric models are subject to stringent requirements
if their use in economic policy analysis is to deliver reliable inferences. Sufficient con-
ditions are unrealistically demanding, so this paper has delineated several operational
necessary conditions and considered how these conditions impinge on policy analysis.
In particular, various forms of exogeneity and causality were highlighted, and were
related to the key issue of parameter invariance.

Many potential approaches to policy analysis typically fail some of the necessary
conditions and hence may not be viable. Inversion of an equation to derive instru-
ment values for achieving a given target value may violate weak exogeneity. Moreover,
statistical inference in conditional models may be hazardous unless the conditioning
variables are weakly exogenous, even though Granger non-causality is sufficient for
the equivalence of standard-error-based impulse responses from systems and condi-

30



tional models. Although such impulse response analysis is invariant to the ordering
of variables, it ignores the correlation between equation residuals. Orthogonaliz-
ing the residuals addresses this problem, but orthogonalization is not recommended
nonetheless. In general, it violates weak exogeneity, and it can induce a sequential
conditioning of variables that depends upon the initial order of the variables. That,
in turn, may lose invariance of coefficients.

If economic policy analysis based on econometric models is to yield useful infer-
ences, those models should be congruent with available information, embody valid
weak exogeneity, and be invariant to policy changes. Tools such as inversion and
impulse response analysis require careful handling if their implications are to match
later realized outcomes.

7 This Issue’s Special Section on Exogeneity, Coin-
tegration, and Economic Policy Analysis

This first paper in this JBES special section provides a framework for discussing
econometric models in economic policy analysis, focusing on the implications of and
interrelations between cointegration and exogeneity. The second paper (by Harbo,
Johansen, Nielsen, and Rahbek) develops the basis for inference about cointegration
in conditional models, which arise naturally in a policy context. The remaining four
papers (by Juselius, Metin, Durevall, and de Brouwer and Ericsson) are primarily
empirical, developing (for the most part) conditional models of inflation. Inflation has
been a longstanding concern of policymakers, as highlighted by the recent increased
interest in inflation targeting. These four papers are not only substantive applied
contributions in themselves for the countries considered (Denmark, Turkey, Brazil,
and Australia). They also provide templates for similar analyses for other countries.
The remainder of this section summarizes these articles.

Harbo, Johansen, Nielsen, and Rahbek analyze the likelihood ratio statistic for
testing cointegration in conditional (or partial) models when weak exogeneity holds.
Johansen’s (1988, 1991) likelihood ratio statistic for testing cointegration in complete
vector autoregressive models has been popular in practice. Weak exogeneity often
appears to be satisfied empirically, so cointegration tests that assume weak exogeneity
have a strong appeal. The authors derive the statistic’s asymptotic distribution,
show its invariance to nuisance parameters, and tabulate critical values; and they
discuss the roles of the various assumptions underlying the procedure, focusing on
the implications of deterministic variables. To illustrate the approach, the authors
test for cointegration in two conditional models involving real money (M1), inflation,
income, and a net interest rate for the United Kingdom.

Juselius develops a multiple-equation model for money, prices, income, and inter-
est rates for Denmark. Money and prices appear to be 1(2); and they cointegrate
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to form real money, which is I(1). The presence of I(2) variables complicates the
econometric implementation and the corresponding economic interpretation. Nomi-
nal money and prices appear to be 1(2) for many other countries as well, however, so
Juselius’s approach may serve as a blueprint for modeling such I(2) variables. Juselius
sequentially considers long-run I(2) properties, long-run I(1) properties, and short-
run structure in the process of constructing a model for real money, inflation, and
the domestic deposit interest rate, conditional on income and the domestic bond rate.
The empirical weak exogeneity of income and the domestic bond rate help simplify
both the cointegration analysis and the modeling of short-run effects; and tests of
the conditional model’s constancy help demonstrate the super exogeneity of those
variables. A policy regime shift in 1983 proves central to the design and evaluation of
the conditional model. A marginal model for the domestic bond rate, conditional on
the German bond rate, elucidates an important international aspect to the Danish
economy, an aspect that may be similar for many other small open economies.

Metin models the relationship between inflation and the public sector deficit in
Turkey. A vector autoregressive analysis finds three stationary relations involving
output growth, inflation, the deficit, the monetary base, and a trend. Output growth
itself is stationary, and so constitutes a trivial cointegrating (stationary) combination.
The second cointegrating vector involves inflation, the deficit, and the monetary base;
and the third involves inflation, the deficit, and a trend. Weak exogeneity does
not hold, so single-equation conditional modeling of inflation proceeds by taking the
system estimates of the cointegrating vectors as given, following the approach of
Juselius (1992). Even though major regime shifts occurred in sample, with inflation
ranging from 0% to 100% per annum, the resulting equilibrium-correction model is
empirically constant, thus demonstrating super exogeneity of the remaining (short-
run) parameters of the conditional model. Economically, budget deficits, real income
growth, and debt monetization all affect Turkish inflation.

Durevall evaluates contending theories for the determination of Brazilian inflation
by allowing feedback effects from disequilibria in relationships based on purchasing
power parity and money demand. Because of the number of variables and the short-
ness of the sample, the two corresponding cointegrating relationships are obtained
from separate analyses, paralleling Juselius (1992). Inflation appears to be I(1), so
the econometric methodology is closely related to that of Juselius (1998, this issue).
From the conditional model derived for inflation, its primary long-run determinant
appears to be deviations from a generalized version of purchasing power parity. Al-
though the growth rate of nominal money directly affects inflation, its level (through
disequilibria in money demand) does not. Additional encompassing tests also rule
out the direct influence of wages and the output gap on inflation. That said, indirect
effects of such variables are possible through the determination of the exchange rate
and the domestic interest rate.

Finally, de Brouwer and FEricsson develop an empirically constant equilibrium-
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correction model for Australian inflation, in which the level of consumer prices adjusts
dynamically to relative aggregate demand and to a markup of prices over domestic and
import costs. Domestic and import costs are weakly exogenous, thereby sustaining
conditional modeling. The resulting model encompasses a range of economic models
for prices and inflation, including a variant of the price-inflation Phillips curve, wage-
price models, and purchasing power parity. Each of these economic theories, however,
provides only a partial explanation of empirical price behavior in Australia: several
economic determinants are necessary to understand the behavior of the Australian
consumer price index in practice.

Appendix. Table of Contents for the Special Sec-
tion on Exogeneity, Cointegration, and Economic
Policy Analysis
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